(y+y)(y-6)=y^2+24

Simple and best practice solution for (y+y)(y-6)=y^2+24 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (y+y)(y-6)=y^2+24 equation:



(y+y)(y-6)=y^2+24
We move all terms to the left:
(y+y)(y-6)-(y^2+24)=0
We add all the numbers together, and all the variables
(+2y)(y-6)-(y^2+24)=0
We get rid of parentheses
-y^2+(+2y)(y-6)-24=0
We multiply parentheses ..
-y^2+(+2y^2-12y)-24=0
We add all the numbers together, and all the variables
-1y^2+(+2y^2-12y)-24=0
We get rid of parentheses
-1y^2+2y^2-12y-24=0
We add all the numbers together, and all the variables
y^2-12y-24=0
a = 1; b = -12; c = -24;
Δ = b2-4ac
Δ = -122-4·1·(-24)
Δ = 240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{240}=\sqrt{16*15}=\sqrt{16}*\sqrt{15}=4\sqrt{15}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{15}}{2*1}=\frac{12-4\sqrt{15}}{2} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{15}}{2*1}=\frac{12+4\sqrt{15}}{2} $

See similar equations:

| 5m-8=22-m | | 9=4w+4w | | 6y+10=(-12) | | 20/20*x=0.2 | | 20/20x=0.2 | | 4*x-35=-27 | | -7=2/u+2 | | x-160=80 | | 7x+7/3x+19=2x+20/6x+8 | | (-3x+7)=x+19 | | x/20*0.16=100 | | 0,5592=40/x | | 40*0,829=x | | 7x+5–2x=8+2 | | 0,829=40/x | | 6(v-1)=3v-27 | | Y^2-14y+27=0 | | -2y+39=5(y+5) | | 5-3x=-2(x+1) | | H(t)=-25t^2-5t+1269 | | 17x-11=0 | | 56=40/x | | 3x÷8=24÷8 | | 5z/7=2/5 | | 6/x=24/18 | | 15+y=51-y | | s*7+39=130 | | 10+5w=10+17w−12w | | –2g+19−13g=–15g+19 | | 2m+6=61 | | 11=6+d | | 90x^2+72x-54=0 |

Equations solver categories